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EXPERIMENTAL STUDY OF EFFECT OF S n  REACTOR 

CORE POSITION ON NOZZLE HEAT TRANSFER 

by James F. Schmidt, Donald R .  Boldman, Robert C. Ehlers, 
and James W . Coats 

SUMMARY 

A simulated reactor core w a s  i n s t a l l ed  a t  various posit ions upstream of 
a cor ica l  nozzle i n  order t o  determine the influence of core posit ion on nozzle 
heat-transfer and boundary-layer character is t ics .  The tests were conducted i n  
an air f a c i l i t y  at a nominal stagnation temperature and pressure of 9700 R and 
300 pounds per square inch, respectively. 

INTRODUCTION 

I n  recent years the  nuclear rocket has received widespread i n t e r e s t  as a 
propulsion device f o r  long-term anibitious space missions. M a r r y  problems, how- 
ever, have been encountered i n  the development of a workable engine ( r e f s .  l 
t o  3).  I n  addition t o  the  problems associated with the  reactor,  it has been 
shown t h a t  the  rocket engine may have a marginal cooling capabi l i ty  ( r e f .  4) 
because of t he  high heat f luxes i n  the throat  region. 

The existence of this throa t  cooling problem requires an accurate assess- 
ment of nozzle heat-transfer rates; however, t o  date, t he  most sophisticated 
prediction techniques are  not precise enough f o r  the gas side of the  nozzle. 
Gas-side estimates are  complicated by turbulence induced i n  the  flow from the 
reactor  core. Data from references 5 and 6 indicated a sens i t i v i ty  of nozzle 
heat t r ans fe r  t o  changes i n  the posi t ion of a reactor  core simulator. 

The present invest igat ion was conducted i n  order t o  study, i n  greater 
d e t a i l ,  t he  influence of core posi t ion on the  nozzle heat-transfer and boundary- 
layer  charac te r i s t ics .  

SYMBOLS 

Dth nozzle throat  diameter 

h i  heat-transfer coefficient based on enthalpy 
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edge of boundary layer 
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l o c a l  stagnation condition 

w a l l  condition 

reservoir condition 

APPARATUS AND PROCEDURE 

The heat-transfer f a c i l i t y ,  boundary-layer probes, and heat-flux meters 
used i n  this investigation a re  described i n  detai l  i n  reference 6; however, 
a condensed description of t he  apparatus w i l l  be presented herein f o r  purposes 
of c l a r i t y .  

The heat-transfer f a c i l i t y  i s  shown schematically i n  f igure 1. The basic  
configuration consisted of a 6.5-inch-inside-diameter by 17-inch-long adiabat ic  
cyl indrical  approach section followed by a water-cooled 300 convergent, 1 5 O  
divergent conical. nozzle. A plenum boundary-layer bleed system w a s  used t o  
e f f e c t  a uniform veloci ty  prof i le  i n  the plane of t h e  i n l e t  leading edge. 
working f l u i d  w a s  air  heated t o  a nominal temperature of 970' R a t  a pressure 
of about 300 pounds per square inch absolute. 

The 

A simulated reactor core, having 0.25-inch-diameter holes with a center- 
l i n e  spacing of 0.5 inch, w a s  i n s t a l l e d  i n  three  locat ions upstream of t h e  
cyl indrical  i n l e t .  These posit ions were (1) at  the nozzle entrance, ( 2 )  1 inch 

2 



upstream of the  nozzle entrance (0.15 core diameter), and (3) 3 inches upstream 
of the  cylindrical. i n l e t  (20  in .  or 3.1 core diameters upstream of the  nozzle 
entrance).  

Heat-transfer r a t e s  were measured at 1 9  s ta t ions i n  the nozzle by means of 
steady-state-conduction heat-flux meters. 
enthalpy were computed from t h e  measured heat-transfer r a t e s  w i t h  the following 
equat ion : 

Heat-transfer coeff ic ients  based on 

h i  = 
i - i  a d w  

where the  & T & z $ i ~  w a l l  enthalpy id is given by 

A Prandtl  number of 0.7 w a s  assumed. 

Boundary-layer k ine t ic  head measurements were obtained with a P i t o t  probe 
having a rectangular opening C.002 inch high by 0.030 inch wide. 
located normal t o  the wall at a s t a t ion  i n  the convergent par t  of t he  nozzle 
corresponding t o  a Mach nuniber of 0.08. 

The probe w a s  

The k ine t ic  head mcasm-ernents were converted t o  ve loc i t ies  by means of t h e  
incompressible Bernoulli equation 

The density at any point i n  the boundary layer was  computed from the  w a l l  s t a t i c  
pressure and the corresponding value of measured t o t a l  temperature with the 
assumption t h a t  Ts/Tt = 1.0. 
nmiber of the  measuring s t a t ion  i s  low (Mach number, 0.08). 

T h i s  l a t t e r  assumption i s  v d i d  since the  Mach 

Boundary-layer temperatures i n  the nozzle s t a t i o n  were measured with a 
probe containing a bare junction Chromel-Alumel thermocouple. 
t he  junction was  0.005 inch. 
obtained from a thermocouple i n  the  plenum. 

The diameter of 
The reference temperature f o r  t he  probe was 

The nozzle heat-transfer coefficients h are plot ted as a function of 
ax ia l  distance x/Dth i n  figure 2. The disthibutions represent the  three 
cases of t he  simulated reactor  core located upstream of the  nozzle and the case 
i n  which t h e  core w a s  removed. 

Location of the  core 3 inches upstream of the  cyl indrical  approach section 
(approximately 3.1 core diameters ahead of the  nozzle entrance) resul ted i n  a 
heat-transfer d i s t r ibu t ion  nearly identical. t o  that obtained with the core 
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removed. Turbulence measurements relevant t o  this l a t t e r  observation are d i s -  
cussed i n  reference 6 .  The measurements revealed that an appreciable reduction 
i n  turbulence l e v e l  had occurred between t h e  core and t h e  measuring s t a t i o n  i n  
the  convergent par t  of t h e  nozzle, which might explain t h e  negl igible  e f f ec t  on 
nozzle heat- t ransfer  coef f ic ien ts .  

When the  core w a s  located at t h e  nozzle entrance and 0.15 core diameter 
upstream, throa t  heat- t ransfer  coef f ic ien ts  were about 28 percent higher than 
values obtained with t h e  core removed. 
t ransfer  d i s t r ibu t ion  i n  t h e  convergent sect ion of t he  nozzle with the  reactor  
core simulator located at the  nozzle entrance. For t h i s  loca t ion  of t he  core, 
t he  heat-transfer coeff ic ient  at t h e  f irst  measuring s t a t i o n  i n  t h e  nozzle 
w a s  nearly as high as t h e  throa t  value (see f i g .  2 ) .  However, t h e  high heat- 
t ransfer  coeff ic ient  at t h i s  f irst  measuring s t a t i o n  w a s  reduced 37 percent by 
moving the  core simulator 0.15 core diameter upstream of the  nozzle entrance. 
A t  t he  t h i r d  measuring s t a t ion  t h e  heat- t ransfer  coef f ic ien t  w a s  reduced by 
approximately 50 percent with this 0.15-diameter displacement of t h e  core. 
This pronounced heat- t ransfer  reduction i n  t h e  convergent par t  of t h e  nozzle 
suggests t h a t  reactor  design c r i t e r i a  include a moderate separation of t he  core 
and nozzle. 

Equally s ign i f icant  w a s  t he  heat- 

h i  

The t h i r d  heat-transfer measuring s t a t ion  i n  the  nozzle (x/Dth = -1.68) i s  
of special  i n t e r e s t  because the  boundary-layer temperatures and ve loc i ty  pro- 
f i l e s  are a l so  measured at t h i s  locat ion.  A t  f irst ,  t he  l a rge  difference i n  
the  heat-transfer coeff ic ient  at t h i s  t h i r d  measuring s t a t ion  w a s  expected t o  
be adequately explained by the  measured boundary-layer temperature and ve loc i ty  
prof i les ,  shown i n  f igures  3 and 4, respectively.  However, the  temperature and 
ve loc i ty  p ro f i l e s  at t h i s  t h i r d  measuring s t a t i o n  a re  almost i den t i ca l  f o r  the  
cases of no core and a core located at t h e  nozzle entrance. If the  boundary- 
layer  prof i les  and the  measured heat t r ans fe r  a r e  correct ,  t he  la rge  differences 
i n  the  heat t r ans fe r  may possibly be a t t r ibu ted  t o  e f f e c t s  i n  the sublayer r e -  
gion near t he  w a l l  t ha t  cannot be measured. With t h e  core moved 0.15 core diam- 
e t e r  upstream of the  nozzle entrance, t he  slope of t he  temperature p r o f i l e  
( f i g .  4) steepened, which indicated greater  heat t r ans fe r  than with the  core a t  
the  nozzle entrance. This temperature p ro f i l e  i s  dis turbing since t h e  measured 
heat t ransfer  i s  s ign i f icant ly  l e s s  ( f i g .  2 )  as t h e  core i s  moved 0.15 core d i -  
ameter upstream of the nozzle entrance. However, the  sublayer region near t he  
w a l l  may s t i l l  control  t he  important heat-transfer mechanism, while a s l i g h t  
change i n  the temperature p ro f i l e  may be only a secondary e f f ec t  on the  heat 
t r ans fe r .  
t h e  general s imi l a r i t y  which i s  charac te r i s t ic  of p ro f i l e s  obtained i n  the  accel-  
e ra t ing  f l o w  f i e l d  of the  nozzle (ref.  6 ) .  

The measured boundary-layer p ro f i l e s  f o r  each core loca t ion  r e t a i n  

Experimentally, it may be possible t h a t  axial changes i n  core posi t ion 
produced differences i n  t h e  or ien ta t ion  of the  per ipheral  core s imilator  holes 
r e l a t ive  t o  t h e  temperature and pressure probes. Thus, there  i s  a poss ib i l i t y  
that je t  impingement phenomena are  not en t i r e ly  eradicated by accelerat ion 
e f f ec t s  by the time the  flow reaches the  boundary-layer measuring s t a t ion .  
However, as an indicat ion of extreme accelerat ion e f fec ts ,  unreported recent 
experimental da t a  have shown t h a t  a f u l l y  developed turbulent  boundary layer  
enter ing the  present nozzle i s  reduced t o  approximately the  same value of 
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boundary-layer thickness  as reported herein at the  same measuring s t a t ion .  

SUMMARY OF RESULTS 

An experimental invest igat ion w a s  conducted t o  deteraine the e f f e c t  of 
simulated reac tor  core posi t ion on nozzle heat-transfer and boundary-layer 
charac te r i s t ics ,  and the following results were obtained: 

1. The inclusion of a simulated reactor  core upstream of a conical nozzle 
may or may not influence nozzle heat-transfer coef f ic ien ts ,  depending on the  
r e l a t i v e  posi t ions of the  core and nozzle. When the  core w a s  located a t  the  
u ~ z z l . e  entrrance and 0.15 core diameter ( a k u t  1.0 in.]  upstream, a 28-percent 
increase i n  th roa t  values of heat-trmsfer coeff ic ient  was real ized,  cmpared 
t o  the  case of no core. wlen the  cere was displaced about 3.i i i f ~ c t e r s  ahead 
of the nozzle entrance, the  heat- t ransfer  coeff ic ients  were vii-+Ga113r t.he same 
as  values obtained with the core removed. 

2. When the  core was located a t  the  nozzle entrance, heat-transfer coef f i -  
c i en t s  i n  the  entrance region (first measuring s t a t ion )  were nearly as high as 
th roa t  values. 
compounding of the d i f f i c u l t  nozzle cooling problems. 

This observation is  s igni f icant  f o r  it indicates  a poten t ia l  

3. A t  t he  first measuring s t a t ion ,  t he  heat- t ransfer  coef f ic ien t  w a s  re- 
duced by 37 percent wiieii t5e c ~ r e  was moved from the  nozzle entrance t o  a posi-  
t i o n  0.15 diameter upstream of the  nozzle entrance. 
c i en t  a t  the  t h i r d  measuring s t a t i o n  was reduced by about 50 percent when the  
core was 0.15 diameter upstream of the  entrance. 

EIC heat- t ransfer  coef f i -  

4. In t h e  design of nuclear reactor  systems, it may be desirable  t o  incor- 
porate a moderate separation of the  core and nozzle i n  order t o  reduce the  
heat- t ransfer  coef f ic ien ts  i n  the  convergent p a r t  of the nozzle, especial ly  i n  
the  region near the  core interface.  

5. Boundary-layer temperature and veloci ty  p ro f i l e s  i n  the  nozzle were 
qui te  similar f o r  a l l  core simulator posit ions even though heat- t ransfer  r a t e s  
a t  the survey s t a t i o n  d i f fe red  appreciably. 
predominant influence of the unmeasured sublayer region on heat-transfer r a t e s .  

This result suggests a possible 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, December 3, 1965. 
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Figure 2. - Variatlon of heat-transfer coefficient along nozzle for various loca- 
tions of simulated reactor core. Reservoir temperature, 970" R; reservoir 
pressure, 300 pounds per square inch; throat diameter, 1.492 inches. 
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Figure 3. -Temperature profi les at convergent nozzle probing station fo r  var ious locations of s imu-  
lated reactor core. Reservoir temperature, 970" R; reservoir  pressure, 300 pounds per square i n c h  
absolute. 
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Figure 4. -Veloci ty prof i les at convergent nozzle probing station for  var ious locations of 
simulated reactor core. Reservoir temperature, 970" R; reservoir  pressure, 300 pounds 
per square i n c h  absolute. 
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